Pentamethylcyclopentadienyl tungsten complexes containing imido, hydrazido and amino acid derived $\mathbf{N}-\mathbf{O}$ chelate ligands \dagger

C arl Redshaw, ${ }^{*, a}$ Vernon C. Gibson, ${ }^{\text {a }}$ W illiam C legg, ${ }^{\text {b }}$ A ndrew J. Edwards ${ }^{\text {b }}$ and B enedict M iles ${ }^{\text {b }}$
${ }^{\text {a }}$ D epartment of C hemistry, I mperial C ollege, South K ensington, L ondon, UK SW 7 2AY
${ }^{\text {b }}$ D epartment of C hemistry, U inversity of Newcastle, N ewcastle upon Tyne, UK NE 1 7RU

Reactions of $\left[\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{M}_{5}\right) \mathrm{Cl}_{4}\right]$ with a number of functionalised amines have been studied. With 2 equivalents of the dianiline 2, 2'-($\left.\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{H}_{4}$ the ansa-bis(imido)tungsten complex [$\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right) \mathrm{Cl}\left\{2,2^{\prime}-\left(\mathrm{NC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right\}$] 1 was obtained. A nalogous treatment with 2-diphenylphosphinoaniline gave the 2-diphenylphosphinesubstituted imidometal species $\left[W\left(\eta-\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right) \mathrm{Cl}\left(\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}-2\right)_{2}\right]$ 2. The pendant tertiary phosphine groups do not interact with the metal centre. 1,1-D iphenylhydrazine hydrochloride reacted with $\left[\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{M} \mathrm{e} \mathrm{e}_{5}\right) \mathrm{Cl}_{4}\right]$ to give $\left[W\left(\eta-C_{5} \mathrm{M}_{5}\right) \mathrm{Cl}_{3}\left(\mathrm{NNPh}_{2}\right)\right]$ 3. Reactions of $\left[W\left(\eta-\mathrm{C}_{5} \mathrm{M}_{5}\right) \mathrm{Cl}_{4}\right]$ with the amino acid 2,2 -diphenylglycine or tyrosine afforded the tungsten(v) complexes $\left[W\left(\eta-\mathrm{C}_{5} \mathrm{M}_{5}\right) \mathrm{Cl}_{3}\left(\mathrm{NH}_{2} \mathrm{CPh}_{2} \mathrm{CO}_{2}\right)\right] 4$ and $\left[\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{M}_{5}\right) \mathrm{Cl}_{3}\left\{\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right.\right.\right.$ $\left.\left.\mathrm{OH}-\mathrm{p}) \mathrm{CO}_{2}\right\}\right] \mathbf{5}$ respectively. Complexes $\mathbf{1}$ to $\mathbf{5}$ have been structurally characterised.

The chemistry of imido transition-metal complexes bearing simplealkyl or aryl substituents is relatively well developed. ${ }^{1}$ By contrast, there have been few reports of imidometal complexes in which the imido substituent carries one or more heteroatom functionalities. ${ }^{2-4}$ In recent work we have been investigating routes to highly functionalised imidometal systems, for example derivatives containing Brønsted acid substituents such as $\mathrm{CO}_{2} \mathrm{H}$ and $\mathrm{SO}_{3} \mathrm{H} .{ }^{5}$ We have also recently described the first chelating or ansa bis(imido)metal derivatives. ${ }^{6}$

A lthough the chemistry of $\left[W\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Cl}_{4}\right]$ is relatively unexplored it is known to provide an entry into half-sandwich tungsten systems. ${ }^{7}$ We therefore decided to investigate its reactions with a number of bifunctional amino-containing reagents with the aim of generating novel functionalised imidometal species. We thus describe herein several unusual products, including a further example of an ansa-bis(imido)metal complex, a tertiary phosphine-derivatised bis(imido) derivative, a hydrazido(2-) species and $\mathrm{N}-\mathrm{O}$ chelate complexes derived from amino acids. The products are summarised in Scheme 1. We also note that a number of simple organoimido halfsandwich complexes of molybdenum and tungsten have been described by Sundermeyer et al. ${ }^{8 \mathrm{a}}$ and Green et al. ${ }^{8 \mathrm{~b}}$

Results and D iscussion

Imido complexes

The diamagnetic tungsten(vi) complex $\left[\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right) \mathrm{Cl}\left\{2,2^{\prime}\right.\right.$ $\left.\left.\left(\mathrm{NC}_{6} \mathrm{H}_{4}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)\right\}\right] \mathbf{1}$ is obtained upon reaction of [W $\left(\eta-\mathrm{C}_{5}\right.$ $\left.\left.\mathrm{Me}_{5}\right) \mathrm{Cl}_{4}\right]$ with 2 equivalents of the diamine $2,2^{\prime}-\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\right)_{2}-$ $\mathrm{C}_{2} \mathrm{H}_{4}$ in refluxing toluene. Brown-orange blocks suitable for an X-ray diffraction study were grown from acetonitrile and the molecular structure is shown in Fig. 1. Selected bond lengths and angles are given in Table 1. The co-ordination geometry is best described as distorted tetrahedral with the $\mathrm{C}_{5} \mathrm{M}_{5}$ ring occupying one position; angles at W range from 99.8(1) to 117.6(1).

For the chelating diimide ligand the $\mathrm{C}-\mathrm{N}-\mathrm{W}$ angles are $163.4(3)$ and $166.3(3)^{\circ}$ with corresponding $\mathrm{W}-\mathrm{N}$ distances of 1.795 (3) and $1.776(3) \AA$. A n approximate non-crystallographic mirror plane bisects the molecule passing through C(19), C (20), W, Cl and the centre of the ethanediyl bridge, the main distortion from the symmetry being in this bridge The only other structurally characterised compound containing a chelating bis-

[^0]

4

Scheme 1
(imido) ligand derived from $2,2^{\prime}-\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{H}_{4}$ is $\left[\mathrm{M} \mathrm{OCl} 2_{2}\right.$ $\left.\left\{2,2^{\prime}-\left(\mathrm{NC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right\}(\mathrm{dme})\right]$ (dme $=1,2$-dimethoxyethane), ${ }^{6}$ for which the bite angle is $107.13(7)^{\circ}$ [cf. 107.2(1) ${ }^{\circ}$ in 1]. There is clear evidence of $\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}$ ring slippage in $\mathbf{1}$; the $\mathrm{W}-\mathrm{C}$ distances differ significantly, from 2.359(4) [for C(16)] to 2.498(4) \AA [for C(20)]. This effect is summarised later for all the structures. A similar situation occurs in the complex [W ($\left.\eta-\mathrm{C}_{5} \mathrm{M}_{5}\right) \mathrm{Cl}_{2}\{1,2-$ $\left.(\mathrm{HN})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}$]; interestingly here the use of 1,2-phenylenediamine results only in a diamido chelate most probably due to the restricted angles at the metal-bound nitrogen atoms which prevent the pseudo-linear $\mathrm{M}-\mathrm{N}-\mathrm{C}$ imido ligand arrangement being attained. ${ }^{\text {7a }}$

It was envisaged that an o-diphenylphosphine-substituted

Table 1 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 1

$\mathrm{W}-\mathrm{N}(1)$	$1.795(3)$	$\mathrm{W}-\mathrm{N}(2)$	$1.776(3)$
$\mathrm{W}-\mathrm{Cl}$	$2.3499(9)$	$\mathrm{W}-\mathrm{C}(16)$	$2.359(4)$
$\mathrm{W}-\mathrm{C}(24)$	$2.366(4)$	$\mathrm{W}-\mathrm{C}(22)$	$2.450(4)$
$\mathrm{W}-\mathrm{C}(18)$	$2.466(4)$	$\mathrm{W}-\mathrm{C}(20)$	$2.498(4)$
$\mathrm{W}-\mathrm{Cent}$	$2.105(4)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.367(5)$
$\mathrm{N}(2)-\mathrm{C}(14)$	$1.380(5)$		
$\mathrm{N}(2)-\mathrm{W}-\mathrm{N}(1)$	$107.2(1)$	$\mathrm{N}(1)-\mathrm{W}-\mathrm{Cl}$	$102.8(1)$
$\mathrm{N}(2)-\mathrm{W}-\mathrm{Cl}$	$99.8(1)$	$\mathrm{Cent}-\mathrm{W}-\mathrm{N}(1)$	$117.6(1)$
$\mathrm{Cent}-\mathrm{W}-\mathrm{N}(2)$	$115.2(1)$	$\mathrm{Cent}-\mathrm{W}-\mathrm{Cl}$	$112.1(1)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{W}$	$163.4(3)$	$\mathrm{C}(14)-\mathrm{N}(2)-\mathrm{W}$	$166.3(3)$

In the tables, Cent is the centroid of the $\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}$ ring.

Table 2 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for complex $\mathbf{2} \cdot \mathrm{M} \mathrm{eCN}$

W-N (1)	$1.783(3)$	$\mathrm{W}-\mathrm{N}(2)$	$1.775(3)$
$\mathrm{W}-\mathrm{Cl}$	$2.3257(9)$	$\mathrm{W}-\mathrm{C}(37)$	$2.319(3)$
$\mathrm{W}-\mathrm{C}(39)$	$2.427(3)$	$\mathrm{W}-\mathrm{C}(45)$	$2.427(3)$
$\mathrm{W}-\mathrm{C}(41)$	$2.470(3)$	$\mathrm{W}-\mathrm{C}(43)$	$2.475(3)$
$\mathrm{W}-\mathrm{Cent}$	$2.100(3)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.368(4)$
$\mathrm{N}(2)-\mathrm{C}(19)$	$1.378(4)$		
$\mathrm{N}(2)-\mathrm{W}-\mathrm{N}(1)$	$104.0(1)$	$\mathrm{N}(1)-\mathrm{W}-\mathrm{Cl}$	$103.8(1)$
$\mathrm{N}(2)-\mathrm{W}-\mathrm{Cl}$	$103.4(1)$	$\mathrm{Cent}-\mathrm{W}-\mathrm{N}(1)$	$117.3(1)$
$\mathrm{Cent-W}-\mathrm{N}(2)$	$117.7(1)$	$\mathrm{Cent-W}-\mathrm{Cl}$	$108.9(1)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{W}$	$157.9(2)$	$\mathrm{C}(19)-\mathrm{N}(2)-\mathrm{W}$	$165.1(3)$

Fig. 1 M olecular structure of complex 1
aniline might afford a chelating imidophosphine or alternatively an amidophosphine species. The reaction of $\left[W\left(\eta-\mathrm{C}_{5} \mathrm{M}_{5}\right) \mathrm{Cl}_{4}\right]$ with $1,2-\left(\mathrm{H}_{2} \mathrm{~N}\right)\left(\mathrm{Ph}_{2} \mathrm{P}\right) \mathrm{C}_{6} \mathrm{H}_{4}$ in refluxing toluene gave after work-up orange needles in ca. 30\% isolated yield. A nalytical and spectroscopic data were not consistent with either an imido- or amido-phosphine chelate complex and hence its structure was determined by X -ray diffraction. The molecular structure of $\mathbf{2}$, determined as a $1: 1 \mathrm{M} \mathrm{eCN}$ solvate, is shown in Fig. 2; selected bond lengths and angles are given in Table 2.

A gain the molecule has a pseudo-tetrahedral geometry with a non-crystallographic mirror plane passing through CI, W and the $\mathrm{C}_{5} \mathrm{M}_{5}$ ring. Interestingly, in contrast to 1 , the imido ligand is not a chelate, preferring instead to form a linear W N R group with a pendant and non-co-ordinated $\mathrm{Ph}_{2} \mathrm{P}$ group $[\mathrm{W}-\mathrm{N}-\mathrm{C}$ 157.9(2) and $165.1(3)^{\circ} ; W-N 1.783(3)$ and $1.775(3) \AA$ A]. Its structure bears close resemblance to the bis(arylimido) complex $\left[W\left(\eta-\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right)(\mathrm{NR})_{2} \mathrm{Cl}\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}-2,6\right)$ structurally characterised by Wigley and co-workers. ${ }^{9}$ It is noteworthy that Dilworth and co -workers ${ }^{10}$ have structurally characterised a rhenium complex, $\left[\mathrm{ReCl}_{2}\left(\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}-2\right)\left(\mathrm{HNC}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}-2\right)\right]$, which is found to contain a bidentate bonding mode for this ligand, though ${ }^{31}$ P NMR data indicate that the monodentate

Table 3 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for complex 3

$\mathrm{W}-\mathrm{N}(2)$	$1.769(2)$	$\mathrm{W}-\mathrm{Cl}(1)$	$2.4043(7)$
$\mathrm{W}-\mathrm{Cl}(2)$	$2.4270(7)$	$\mathrm{W}-\mathrm{Cl}(3)$	$2.4235(7)$
$\mathrm{W}-\mathrm{C}(14)$	$2.281(3)$	$\mathrm{W}-\mathrm{C}(15)$	$2.300(3)$
$\mathrm{W}-\mathrm{C}(13)$	$2.427(3)$	$\mathrm{W}-\mathrm{C}(16)$	$2.459(3)$
$\mathrm{W}-\mathrm{C}(17)$	$2.522(3)$	$\mathrm{W}-\mathrm{Cent}$	$2.068(3)$
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.296(3)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.440(3)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.440(3)$		
$\mathrm{N}(2)-\mathrm{W}-\mathrm{Cl}(1)$	$126.3(1)$	$\mathrm{N}(2)-\mathrm{W}-\mathrm{Cl}(2)$	$82.8(1)$
$\mathrm{N}(2)-\mathrm{W}-\mathrm{Cl}(3)$	$84.4(1)$	$\mathrm{Cl}(1)-\mathrm{W}-\mathrm{Cl}(2)$	$80.8(1)$
$\mathrm{Cl}(1)-\mathrm{W}-\mathrm{Cl}(3)$	$80.8(1)$	$\mathrm{Cl}(2)-\mathrm{W}-\mathrm{Cl}(3)$	$144.8(1)$
$\mathrm{Cent}-\mathrm{W}-\mathrm{N}(2)$	$123.6(1)$	$\mathrm{Cent}-\mathrm{W}-\mathrm{Cl}(1)$	$110.0(1)$
$\mathrm{Cent}-\mathrm{W}-\mathrm{Cl}(2)$	$106.0(1)$	$\mathrm{Cent}-\mathrm{W}-\mathrm{Cl}(3)$	$108.4(1)$
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(1)$	$117.9(2)$	$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(7)$	$120.2(2)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	$121.8(2)$	$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{W}$	$173.8(2)$

Fig. 2 M olecular structure of complex 2

Fig. 3 M olecular structure of complex 3
co-ordination mode prevails in solution. For $\mathbf{2}$ we observe the opposite trend, the solid-state structure showing the monodentate co-ordination mode, the solution ${ }^{31} \mathrm{P}$ N M R spectrum revealing two resonances, at $\delta+39.5$ and -15.0 , consistent with the presence of one co-ordinated and one non-co-ordinated phosphine group.

H ydrazido complex

Treatment of $\left[\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right) \mathrm{Cl}_{4}\right]$ with 1,1-diphenylhydrazine hydrochloride, $\mathrm{Ph}_{2} \mathrm{NNH}_{2} \cdot \mathrm{HCl}$, affords after work-up dark brown blocks of $\left[\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Cl}_{3}\left(\mathrm{NNPh}_{2}\right)\right]$ 3. Complex 3 shows a single $v_{\text {N }}$ stretch at $1585 \mathrm{~cm}^{-1}$. C rystals suitable for an X-ray analysis were grown from MeCN at room temperature; the molecular structure is shown in Fig. 3. Selected bond lengths and angles are given in Table 3.

Table 4 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 4

$\mathrm{W}-\mathrm{O}(1)$	$2.023(1)$	$\mathrm{W}-\mathrm{N}$	$2.244(2)$
$\mathrm{W}-\mathrm{Cl}(1)$	$2.3879(5)$	$\mathrm{W}-\mathrm{Cl}(2)$	$2.4101(6)$
$\mathrm{W}-\mathrm{Cl}(3)$	$2.4187(5)$	$\mathrm{W}-\mathrm{C}(16)$	$2.346(2)$
$\mathrm{W}-\mathrm{C}(15)$	$2.385(2)$	$\mathrm{W}-\mathrm{C}(17)$	$2.386(2)$
$\mathrm{W}-\mathrm{C}(19)$	$2.438(2)$	$\mathrm{W}-\mathrm{C}(18)$	$2.451(2)$
$\mathrm{W}-\mathrm{Cent}$	$2.075(2)$	$\mathrm{O}(1)-\mathrm{C}(1)$	$1.310(2)$
$\mathrm{O}(2)-\mathrm{C}(1)$	$1.210(3)$	$\mathrm{N}-\mathrm{C}(2)$	$1.504(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.543(3)$		
$\mathrm{O}(1)-\mathrm{W}-\mathrm{N}$	$73.2(1)$	$\mathrm{O}(1)-\mathrm{W}-\mathrm{Cl}(1)$	$149.9(1)$
$\mathrm{N}-\mathrm{W}-\mathrm{Cl}(1)$	$76.7(1)$	$\mathrm{O}(1)-\mathrm{W}-\mathrm{Cl}(2)$	$87.7(1)$
$\mathrm{N}-\mathrm{W}-\mathrm{Cl}(2)$	$76.2(1)$	$\mathrm{Cl}(1)-\mathrm{W}-\mathrm{Cl}(2)$	$85.7(1)$
$\mathrm{O}(1)-\mathrm{W}-\mathrm{Cl}(3)$	$86.8(1)$	$\mathrm{N}-\mathrm{W}-\mathrm{Cl}(3)$	$76.3(1)$
$\mathrm{Cl}(1)-\mathrm{W}-\mathrm{Cl}(3)$	$85.7(1)$	$\mathrm{Cl}(2)-\mathrm{W}-\mathrm{Cl}(3)$	$152.4(1)$
$\mathrm{Cent}-\mathrm{W}-\mathrm{O}(1)$	$102.7(1)$	$\mathrm{Cent}-\mathrm{W}-\mathrm{N}$	$175.8(1)$
$\mathrm{Cent}-\mathrm{W}-\mathrm{Cl}(1)$	$107.4(1)$	$\mathrm{Cent}-\mathrm{W}-\mathrm{Cl}(2)$	$104.6(1)$
$\mathrm{Cent}-\mathrm{W}-\mathrm{Cl}(3)$	$103.0(1)$	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{W}$	$127.1(2)$
$\mathrm{C}(2)-\mathrm{N}-\mathrm{W}$	$116.3(2)$	$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	$122.8(2)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$121.7(2)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$115.6(2)$
$\mathrm{N}-\mathrm{C}(2)-\mathrm{C}(1)$	$105.6(2)$		

Fig. 4 M olecular structure of complex 4
The molecular geometry is best described as a distorted square-based pyramid with the centroid of the $\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}$ ligand at the apex. The $N N \mathrm{Ph}_{2}$ unit is linear [W-N(2)-N(1) 173.8(2) ${ }^{\circ}$] with short $W-N[1.769(2) \AA$] and long $N-N[1.296(3) \AA]$ bonds and a trigonal-planar arrangement at the $N(1)$ atom. The $\mathrm{N}_{2} \mathrm{Ph}_{2}$ ligand may be regarded as lying closer to the hydrazido(2-) rather than an isodiazene description and thus the tungsten centre may be formally regarded as being in the +6 oxidation state ${ }^{11}$ The W-C bond lengths are notably different; both $\mathrm{W}-\mathrm{C}(14)$ and $\mathrm{W}-\mathrm{C}(15)$ are short consistent with the presence of either a η^{2} - or $\eta^{4}-\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}$ ligand. A lthough the solid-state structure shows inequivalent phenyl rings, solution ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NM R data show only one set of signals, a consequence of rapid rotation about the $N(1)-N(2)$ bond.

Reactions with amino acids

Reaction of $\left[\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{M}_{5}\right) \mathrm{Cl}_{4}\right]$ with 2,2-diphenylglycine (2 equivalents) in refluxing toluene (12 h) affords, after work-up, large green needles of $\left[\mathrm{WCl}_{3}\left(\eta-\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right)\left(\mathrm{NH}_{2} \mathrm{CPh}_{2} \mathrm{CO}_{2}\right)\right] 4$ in good yield. The IR spectrum of 4 contains two sharp stretches in the $\mathrm{N}-\mathrm{H}$ region, at 3326 and $3269 \mathrm{~cm}^{-1}$, characteristic of the NH_{2} group. The ${ }^{1} \mathrm{H} N M \mathrm{R}$ spectrum is broad and uninformative while the X-band EPR spectrum is sharp with $g_{i s o}=1.870$; there is no observable hyperfine splitting. The molecular structure of 4 is shown in Fig. 4, with selected bond lengths and angles given in Table 4. The amino acid residue binds to the tungsten centre as an aminocarboxylate chelate ligand. Both hydrogen atoms were experimentally located on N (1).

The W $-\mathrm{N}(1)$ distance $[2.2437(17) \AA$] is consistent with a coordinated amine. The geometry about the tungsten centre is best described as pseudo-octahedral with a mer-arrangement of

Table 5 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for complex 5. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

$\mathrm{W}-\mathrm{O}(1)$	$2.053(2)$	$\mathrm{W}-\mathrm{N}$	$2.200(3)$
$\mathrm{W}-\mathrm{Cl}(1)$	$2.4266(9)$	$\mathrm{W}-\mathrm{Cl}(2)$	$2.436(1)$
$\mathrm{W}-\mathrm{Cl}(3)$	$2.3785(8)$	$\mathrm{W}-\mathrm{C}(14)$	$2.334(4)$
$\mathrm{W}-\mathrm{C}(16)$	$2.335(4)$	$\mathrm{W}-\mathrm{C}(18)$	$2.426(4)$
$\mathrm{W}-\mathrm{C}(12)$	$2.429(4)$	$\mathrm{W}-\mathrm{C}(10)$	$2.477(3)$
$\mathrm{W}-\mathrm{Cent}$	$2.074(4)$	$\mathrm{O}(1)-\mathrm{C}(1)$	$1.301(4)$
$\mathrm{O}(2)-\mathrm{C}(1)$	$1.213(4)$	$\mathrm{O}(3)-\mathrm{C}(7)$	$1.361(5)$
$\mathrm{N}-\mathrm{C}(2)$	$1.491(4)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.518(5)$
$\mathrm{O}(1)-\mathrm{W}-\mathrm{N}$	$73.8(1)$	$\mathrm{O}(1)-\mathrm{W}-\mathrm{Cl}(1)$	$85.5(1)$
$\mathrm{N}-\mathrm{W}-\mathrm{Cl}(1)$	$74.7(1)$	$\mathrm{O}(1)-\mathrm{W}-\mathrm{Cl}(2)$	$82.9(1)$
$\mathrm{N}-\mathrm{W}-\mathrm{Cl}(2)$	$76.9(1)$	$\mathrm{O}(1)-\mathrm{W}-\mathrm{Cl}(3)$	$150.9(1)$
$\mathrm{N}-\mathrm{W}-\mathrm{Cl}(3)$	$77.2(1)$	$\mathrm{Cl}(1)-\mathrm{W}-\mathrm{Cl}(2)$	$151.4(1)$
$\mathrm{Cl}(1)-\mathrm{W}-\mathrm{Cl}(3)$	$89.2(1)$	$\mathrm{Cl}(2)-\mathrm{W}-\mathrm{Cl}(3)$	$88.4(1)$
$\mathrm{Cent}-\mathrm{W}-\mathrm{O}(1)$	$104.0(1)$	$\mathrm{Cent}-\mathrm{W}-\mathrm{N}$	$177.4(1)$
$\mathrm{Cent}-\mathrm{W}-\mathrm{Cl}(1)$	$103.9(1)$	$\mathrm{Cent}-\mathrm{W}-\mathrm{Cl}(2)$	$104.3(1)$
$\mathrm{Cent}-\mathrm{W}-\mathrm{Cl}(3)$	$105.1(1)$	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{W}$	$124.5(2)$
$\mathrm{C}(2)-\mathrm{N}-\mathrm{W}$	$114.5(2)$	$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	$122.3(3)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$115.0(3)$	$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$122.6(3)$
$\mathrm{N}-\mathrm{C}(2)-\mathrm{C}(1)$	$106.9(3)$		

Table 6 Distortions in $\mathrm{M}-\mathrm{C}_{5} \mathrm{Me} \mathrm{e}_{5}$ bonding

Compound	$\Delta \mathrm{M} / \AA$	$\Delta \mathrm{X} / \AA$	$\tau /{ }^{\circ}$	Pattern of $\mathrm{M}-\mathrm{C}$
$\mathbf{1}$	0.139	0.160	4.4	ss mm I
$\mathbf{2}$	0.156	0.152	4.3	s mm II
$\mathbf{3}$	0.241	0.265	7.4	ss mm I
$\mathbf{4}$	0.105	0.112	3.1	s mm II
$\mathbf{5}$	0.143	0.169	4.7	ss mm l

$\Delta \mathrm{M}=\mathrm{D}$ ifference between longest and shortest $\mathrm{W}-\mathrm{C}$ bond; $\Delta \mathrm{X}=$ distance between ring centroid and the point where the tungsten-ring normal meets the mean plane (direct measure of ring slippage); $\tau=$ angle between ring-plane normal and metal-centroid vector.

Fig. 5 M olecular structure of complex 5
chlorines; the amino group of the glycine is trans to the $\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}$ ligand, an arrangement often seen in $M\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{X}_{4} \mathrm{~L}$ species. ${ }^{12}$ The W-C distances for the latter are consistent with a slipped $3 e^{-}, \eta^{3}$ group in which the planarity and delocalisation of the C_{5} ring is largely preserved.
Similar treatment of $\left[\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right) \mathrm{Cl}_{4}\right]$ with tyrosine, HCO_{2-} $\mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}$-p, affords after work-up red-brown prisms of $\left[W\left(\eta-\mathrm{C}_{5} M \mathrm{e}_{5}\right) \mathrm{Cl}_{3}\left\{\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}-\mathrm{p}\right) \mathrm{CO}_{2}\right\}\right] 5$. The molecular structure of 5 , determined as a $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvate, is shown in Fig. 5, with selected bond lengths and angles in Table 5. As in 4, the tungsten has a distorted-octahedral geometry with a mer arrangement of chlorines and a chelating aminocarboxylate ligand. It is noteworthy that the essential features of the amino acid are retained, in particular the survival of the p-hydroxy substituent of the tyrosine residue.

Several features emerge from the above structural studies regarding 'ring slippage', see Table 6 . In three cases (1, $\mathbf{3}$ and 5) there are two short (s), two medium (m) and one long (I) W-C bond. The remaining two complexes, 2 and $\mathbf{4}$, have one short, two medium and two long $\mathrm{W}-\mathrm{C}$ bonds. The former pattern (ss mm I) is consistent with a tendency towards $3 \mathrm{e}^{-}, \eta^{3}$ co-

Table 7 Crystallographic data

	Compound				
	1	2-M eCN	3	4	5. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
Formula M	$\begin{aligned} & \mathrm{C}_{24} \mathrm{H}_{227} \mathrm{ClN}_{2} \mathrm{~W} \\ & 562.8 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{46} \mathrm{H}_{43} \mathrm{CIN}{ }_{2} \mathrm{P}_{2} \mathrm{~W} \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N} \\ & 946.1 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{22} \mathrm{H}_{25} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{~W} \\ & 607.6 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{Cl}_{3} \mathrm{NO}_{2} \mathrm{~W} \\ & 6511.7 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{19} \mathrm{H}_{25} \mathrm{Cl}_{3} \mathrm{NO}_{3} \mathrm{~W} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ & 690.5 \end{aligned}$
Crystal system	M onoclinic	Orthorhombic	Orthorhombic	M onoclinic	Orthorhombic
Space group	P $21 / \mathrm{c}$	P na21	P na2 ${ }_{1}$	P2 $21 / n$	P $2_{1} 2_{1} 2_{1}$
a/Å	7.2357(8)	20.6098(10)	18.0769(17)	12.9084(10)	8.7042(8)
b/Å	15.9110(17)	25.2500(12)	8.0405(8)	8.9263(7)	12.7368(11)
c/ \AA	18.452(2)	8.1256(4)	15.6714(15)	20.4865(15)	21.7816(19)
$\beta /{ }^{\circ}$	94.283(2)			100.264(2)	
U / \AA^{3}	2118.3(4)	4228.5(4)	2277.8(4)	2322.8(3)	2414.8(4)
Z	4	4	4	4	4
D $/ \mathrm{g} \mathrm{cm}^{-3}$	1.765	1.486	1.772	1.863	1.899
μ / mm^{-1}	5.59	2.91	5.43	5.34	5.36
F (000)	1104	1904	1184	1276	1348
Crystal size/mm	$0.48 \times 0.40 \times 0.18$	$0.28 \times 0.16 \times 0.12$	$0.38 \times 0.36 \times 0.22$	$0.42 \times 0.33 \times 0.26$	$0.24 \times 0.18 \times 0.16$
$\theta_{\text {max }} /{ }^{\circ}$	28.3	28.5	28.4	28.3	28.3
M aximum hkl indices	9, 21, 24	27, 33, 10	23, 10, 20	17, 11, 27	11, 16, 27
R eflections measured	14041	25500	13790	16049	14923
U nique reflections	4769	9271	4962	5329	5382
$\mathrm{R}_{\text {int }}$	0.0478	0.0291	0.0199	0.0188	0.0245
Transmission	0.186-0.431	0.746-0.862	0.265-0.356	0.331-0.492	0.699-0.831
Extinction coefficient x	0	$0.00012(5)$	0.001 94(8)	0.002 03(8)	0.000 86(8)
Weighting parameters a, b	0.0396, 0	0.0274, 0	0.0058, 0	0.0134, 1.9002	0.0225, 0.6868
No . refined parameters	258	503	259	294	289
wR 2 (all data)	0.0754	0.0512	0.0352	0.0382	0.0507
R 1 ('observed' data)	0.0300 (4279)	0.0241 (7836)	0.0153 (4817)	0.0164 (5122)	0.0207 (5206)
Goodness of fit	1.042	0.837	1.042	1.135	1.080
M aximum, minimum electron density/e \AA^{-3}	1.97, -2.94	1.08, -0.73	0.74, -0.70	0.60, -0.79	1.06, -1.16

ordination; in each case the longest W-C bond is found 'cis' to a $\mathrm{W}-\mathrm{Cl}$ bond. For the latter (s mm II), $\Delta \mathrm{X}$ is smaller and the situation is less clear; $\mathbf{2}$ has a short $\mathrm{W}-\mathrm{C}$ 'trans' to a $\mathrm{W}-\mathrm{Cl}$ bond, whereas in $\mathbf{4}$ there are no distinct $\mathrm{W}-\mathrm{Cl}$ bonds close to 'cis' or 'trans' positions relative to the shortest W-C.

Experimental

General

All manipulations were carried out under an atmosphere of nitrogen using standard Schlenk and cannula techniques or in a conventional nitrogen-filled glove-box. Solvents were refluxed over an appropriate drying agent, and distilled and degassed prior to use Elemental analyses were performed by the microanalytical services of the D epartment of Chemistry at Imperial College. TheN M R spectra were recorded on a Varian VX R 400 S spectrometer at $400.0\left({ }^{1} \mathrm{H}\right)$ and $75.0 \mathrm{M} \mathrm{Hz}\left({ }^{13} \mathrm{C}\right)$; chemical shifts are referenced to the residual protio impurity of the deuteriated solvent. Infrared spectra (N ujol mulls, K Br windows) were obtained on Perkin-Elmer 577 and 457 grating spectrophotometers. The ligand $1,2-\left(\mathrm{H}_{2} \mathrm{~N}\right)\left(\mathrm{Ph}_{2} \mathrm{P}\right) \mathrm{C}_{6} \mathrm{H}_{4}$ was prepared by a previously published procedure ${ }^{13}$ The ligand $2,2^{\prime}$ $\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{H}_{4}$ was obtained as its diphosphate salt and extracted from aqueous alkaline solution into ethyl acetate, dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$ and recrystallised from isopropyl alcohol. The complex $\left[\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{M}_{5}\right) \mathrm{Cl}_{4}\right]$ was prepared by the literature method. ${ }^{14} \mathrm{~A}$ ll other chemicals were obtained commercially and used as received unless stated otherwise.

Preparations

[W $\left.\left(\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Cl}\left\{2, \mathbf{2}^{\prime}-\left(\mathrm{NC}_{6} \mathrm{H}_{4}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)\right\}\right]$ 1. The complex $\left[W\left(\eta-\mathrm{C}_{5} \mathrm{M}_{5}\right) \mathrm{Cl}_{4}\right](1.0 \mathrm{~g}, 2.16 \mathrm{mmol})$ and the diamine 2,2'$\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{H}_{4}(0.92 \mathrm{~g}, 4.33 \mathrm{mmol})$ were refluxed in toluene $\left(40 \mathrm{~cm}^{3}\right)$ for 12 h . Volatiles were removed in vacuo, and the residue was extracted into hot $\mathrm{MeCN}\left(50 \mathrm{~cm}^{3}\right.$) affording on cooling to room temperature (1-2 d) Iarge brown-red prisms.

Y ield $0.56 \mathrm{~g}, 46 \%$ (Found: C, 51.2; $\mathrm{H}, 4.9 ; \mathrm{N}, 5.0 . \mathrm{C}_{24} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{~W}$ requires C, 51.0; H, 4.9; N, 5.2\%). IR : $2360 \mathrm{~m}, 2342 \mathrm{~m}, 1588 \mathrm{w}$, $1352 \mathrm{~m}, 1315 \mathrm{~m}, 1261 \mathrm{~s}, 1089 \mathrm{~s}, 1022 \mathrm{~s}, 939 \mathrm{w}, 867 \mathrm{w}, 800 \mathrm{~s}, 764 \mathrm{~m}$, $741 \mathrm{~m}, 723 \mathrm{~m}$ and $669 \mathrm{w} \mathrm{cm}{ }^{-1}$. ${ }^{1} \mathrm{H} \mathrm{NM}$ R [(CD $\left.)_{2} \mathrm{SO}\right]: \delta 7.35-6.88$ $(\mathrm{m}, 8 \mathrm{H}$, aryl H$), 2.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ and 2.08 (s, $15 \mathrm{H}, \mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}$).
[W $\left.\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Cl}\left(\mathrm{NC}_{6} \mathrm{H}_{4} \mathbf{P P h} \mathbf{h}_{2}-2\right)_{2}\right]$ 2. A nalogous conditions were employed to those described for the preparation of complex 1, using $\left[W\left(\eta-\mathrm{C}_{5} \mathrm{M}_{5}\right) \mathrm{Cl}_{4}\right]$ ($\left.0.25 \mathrm{~g}, 0.54 \mathrm{mmol}\right)$ and 2-diphenylphosphinoaniline ($0.30 \mathrm{~g}, 1.08 \mathrm{mmol}$). Recrystallisation from MeCN or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded 2 as orange needles. Y ield $0.16 \mathrm{~g}, 30 \%$ (Found: $\mathrm{C}, 57.4 ; \mathrm{H}, 4.7 ; \mathrm{N}, 2.8 . \mathrm{C}_{48} \mathrm{H}_{46} \mathrm{Cl}-$ $\mathrm{N}_{2} \mathrm{P}_{2} \mathrm{~W} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires C, 56.9; $\mathrm{H}, 4.6 ; \mathrm{N}, 2.8 \%$). IR: 1615 w , 1585w, 1568w, 1435m, 1351w, 1321m, 1261s, 1092s, 1021s, 977w, 940w, 896w, 867w, 800s, 766m, 747m, 721w, 709w, 696m, 566w, 543w, 520w, 497w, 485w and 468w cm^{-1}. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 7.68-6.61(\mathrm{~m}, 28 \mathrm{H}$, aryl H$)$ and $2.23(\mathrm{~s}, 15 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right) .{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 39.5$ (s) and -15.0 (s).
[W ($\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{Me}_{5}$) $\left.\mathrm{Cl}_{3}\left(\mathrm{NNPh}_{2}\right)\right]$ 3. A s for complex 1, using [W (η $\left.\left.\mathrm{C}_{5} \mathrm{M}_{5}\right) \mathrm{Cl}_{4}\right](1.0 \mathrm{~g}, 2.16 \mathrm{mmol})$ and $\mathrm{Ph}_{2} \mathrm{NNH}_{2} \cdot \mathrm{HCl}(0.96 \mathrm{~g}, 4.3$ mmol) afforded 3 as red-brown blocks. Yield: $0.32 \mathrm{~g}, 31 \%$ (Found: $\mathrm{C}, 43.3 ; \mathrm{H}, 3.1 ; \mathrm{N}, 4.6 . \mathrm{C}_{22} \mathrm{H}_{25} \mathrm{Cl}_{3} \mathrm{~N}{ }_{2} \mathrm{~W}$ requires $\mathrm{C}, 43.5$; H, 4.1; N, 4.6\%). IR: 2361w, 1585w, 1306s, 1262s, 1170m, 1154s, 1069m, 1031m, 969m, 893m, 849w, 802w, 723s, 703m, $684 w, 663 \mathrm{w}$ and $642 \mathrm{~m} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.50-7.47$ ($\mathrm{m}, 4 \mathrm{H}$, aryl H), 7.29-7.26 (m, 6 H , aryl H) and $2.11(\mathrm{~s}, 15 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{M}_{5}\right) .{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{N}$ M R : $\delta 139.77\left(\mathrm{C}_{\text {ipso }}\right), 129.60\left(\mathrm{C}_{\text {meta }}\right), 128.17$ $\left(\mathrm{C}_{5} \mathrm{M}_{5}\right), 123.26\left(\mathrm{C}_{\text {para }}\right), 121.52\left(\mathrm{C}_{\text {ortho }}\right)$ and $121.8\left[\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right]$.
[W ($\left.\left.\eta-\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right) \mathrm{Cl}_{3}\left(\mathrm{NH}_{2} \mathrm{CPh}_{2} \mathrm{CO}_{2}\right)\right]$ 4. A s for complex $\mathbf{1}$, using [$\left.\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{M}_{5}\right) \mathrm{Cl}_{4}\right]$ ($1.0 \mathrm{~g}, 2.16 \mathrm{mmol}$) and 2,2-diphenylglycine ($0.99 \mathrm{~g}, 4.36 \mathrm{mmol}$) afforded 4 as large green needles. Y ield: $1.23 \mathrm{~g}, 88 \%$ (Found: C, 44.3; H, 4.2; N, 2.0. $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{Cl}_{3} \mathrm{~N} \mathrm{O}_{2} \mathrm{~W}$ requires C, 44.2; H, 4.2; N, 2.1\%). IR : $3326 \mathrm{~m}, 3269 \mathrm{~m}, 1699 \mathrm{~s}$,
$1643 \mathrm{~m}, 1632 \mathrm{~m}, 1582 \mathrm{~m}, 1565 \mathrm{~m}, 1542 \mathrm{~m}, 1513 \mathrm{~m}$, 1294s, 1272 s , 1259s, 1247s, 1196m, 1183s, 1159s, 1089s, 1017s, 973m, 920m, 891m, $849 \mathrm{~m}, 817 \mathrm{~m}, 771 \mathrm{~m}, 756 \mathrm{~s}, 724 \mathrm{~m}, 708 \mathrm{~m}, 698 \mathrm{~m}, 681 \mathrm{~m}$, $625 \mathrm{~m}, 603 \mathrm{w}, 527 \mathrm{w}, 478 \mathrm{w}, 429 \mathrm{w}$ and $409 \mathrm{w} \mathrm{cm}^{-1}$. EPR (solid, $298 \mathrm{~K}): \mathrm{g}_{\text {iso }}=1.870$.
[W ($\left.\left.\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Cl}_{3}\left\{\left(\mathrm{NH}_{2}\right) \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}-\mathrm{p}\right) \mathrm{CO}_{2}\right\}\right]$ 5. As for complex 1, using [W $\left.\left(\eta-\mathrm{C}_{5} \mathrm{M}_{5}\right) \mathrm{Cl}_{4}\right](0.5 \mathrm{~g}, 1.08 \mathrm{mmol})$ and tyrosine ($0.39 \mathrm{~g}, 2.16 \mathrm{mmol}$) afforded 5 as orange-brown prisms. C rystals suitable for an X -ray analysis were grown from dichloromethane. Y ield $0.46 \mathrm{~g}, 70 \%$ (Found: C, 38.9; H , 4.3; N, 4.3. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{Cl}_{3} \mathrm{NO}_{3} \mathrm{~W} \cdot \mathrm{CH}_{3} \mathrm{CN}$ requires C , 39.0; $\mathrm{H}, 4.4 ; \mathrm{N}$ 4.3\%). IR: 3268s, 3221s, 2285w, 2250w, 1665s, 1614w, 1592w, 1569w, 1518m, 1333m, 1298w, 1266s, 1231m, 1208m, 1188s, 1171s, 1154s, 1106s, 1076s, 1016s, 917w, 879m, 854w, 832m, 792w, 769w, 721s and 641w cm^{-1}. EPR (solid, 298 K): $g_{\text {iso }}=1.892$.

X-R ay crystallography

Crystal data and other information on the structure determinations are given in Table 7. All measurements were made at 160 K on a Siemens SMART CCD area detector diffractometer with graphite-monochromated $\mathrm{M} \mathrm{o-K} \alpha$ radiation ($\lambda=0.71073$ \AA). Cell parameters were refined from the observed ω angles of all strong reflections in each complete data set. Intensities were integrated from sets of exposures each taken over a 0.3° range in ω, covering more than a hemisphere of reciprocal space in each case Semiempirical absorption corrections were applied, based on repeated and symmetry-equivalent reflections.

The structures were solved by direct methods, and refined by full-matrix least squares on F^{2} values, with weighting $\mathrm{w}^{-1}=$ $\sigma^{2}\left(F_{0}{ }^{2}\right)+(\mathrm{aP})^{2}+(b P)$, where $P=\left(F_{0}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$. All nonhydrogen atoms were assigned anisotropic displacement parameters, and isotropic hydrogen atoms were included with riding-model constraints and torsional freedom of methyl groups. A n isotropic extinction parameter was refined, whereby $\mathrm{F}_{\mathrm{o}}{ }^{\prime}=\mathrm{F}_{\mathrm{d}}\left(1+0.001 \times \mathrm{F}_{\mathrm{c}}{ }^{2} \lambda^{3} / \sin 2 \theta\right)^{\frac{1}{4}}$. Residuals are defined as $w R 2=\left[\Sigma w\left(F_{0}{ }^{2}-F_{c}{ }^{2}\right)^{2} / \Sigma w\left(F_{0}{ }^{2}\right)^{2}\right]^{\frac{1}{2}}, \quad R 1=\Sigma| | F_{0}\left|-\left|F_{d}\right|\right| \Sigma\left|F_{0}\right|$, the latter being calculated only for 'observed' data with $\mathrm{F}_{0}{ }^{2}>$ $2 \sigma\left(\mathrm{~F}_{0}{ }^{2}\right)$ for comparison with conventional refinements on F values; the goodness of fit was calculated for all F^{2} values. The largest residual electron-density peaks lay close to tungsten atoms. Programs used: standard Siemens control (SM ART) and integration (SAINT) software, Siemens SHELXTL, and local programs. ${ }^{15}$

CCDC reference number 186/599.

Acknowledgements

The Engineering and Physical Sciences Research Council is thanked for financial support.

References

1 D. E. Wigley, P rog. Inorg. Chem., 1994, 42, 239.
2 J. H. Oskam, H. H. Fox, K. B. Yap, D. H. M cConville, R. O'D ell, B. J. Lichtenstein and R. R. Schrock, J. Organomet. Chem., 1993, 459, 185.
3 P. E. Collier, S. C. Dunn, P. M ountford, O. V. Shishkin and D. Swallow, J. Chem. Soc., D alton Trans., 1995, 3743; A. J. Blake, P. E. Collier, S. C. D unn, W.-S. Li, P. M ountford and O. V. Shishkin, J. Chem. Soc., D alton Trans., 1997, 1549; M . L. H. Green, J. T. James and J. F. Saunders, Chem. Commun., 1996, 1345.
4 J. B. A rterburn, I. M . Fogarty, K . A . H all, K . C. Ott and J. C. Bryan, A ngew. Chem., Int. Ed. Engl., 1996, 35, 2877.
5 V. C. Gibson, C. Redshaw, W. Clegg and M. R. J. Elsegood, J. Chem. Soc., D alton Trans., 1997, 18, 3207.
6 V. C. Gibson, C. Redshaw, W. Clegg, M. R. J. Elsegood, U. Siemeling and T. Turk, J. Chem. Soc., D alton T rans., 1996, 4513.

7 (a) C. Redshaw, G. Wilkinson, T. K. N. Sweet and M. B. H ursthouse, Polyhedron, 1993, 12, 2417; (b) J. Okuda, R. C. M urray, J. C. Dewan and R. R. Schrock, Organometallics, 1986, 5, 1681; (c) A. H. Liu, R. C. M urray, B. D. Santarsiero and R . R. Schrock, J. Am. Chem. Soc., 1987, 109, 4282; (d) C. J. H arlan, R. A. Jones, S. U. K oschmieder and C. M. N unn, Polyhedron, 1990, 9, 669; (e) M . S. Rau, C. M . K retz, L. A . M ercando and G. L. G eoffrey, J. A m. C hem. Soc., 1991, 113, 7420; (f) M. B. O'R egan, M . G. Vale, J. F. Payack and R. R. Schrock, Inorg. Chem., 1992, 31, 1112.

8 (a) J. Sundemeyer, U. Radius and C. Burschka, Chem. Ber., 1992, 125, 2379; (b) M. L. H. Green, P. C. K onidaris, P. M ountford and S. J. Simpson, J. C hem. Soc., C hem. C ommun., 1992, 256.

9 S. R. H uber, T. C. Baldwin and D. E. Wigley, O rganometallics, 1993, 12, 91.
10 M . T. A hmet, B. Coutinho, J. R. Dilworth, J. R . M iller, S. J. Parrott, Y. Zheng, M . H arman, M . B. H ursthouse and A. M alik, J. Chem. Soc., D alton Trans., 1995, 3041.
11 J. R. Dilworth, V. C. Gibson, C. Lu, J. R. Miller, C. Redshaw and Y. Zhend, J. Chem. Soc., Dalton Trans., 1996, 269; A. A. Danopoulos, G. Wilkinson and D. J. Williams, J. Chem. Soc., D alton Trans., 1994, 907.
12 See, for example, W. A . H errmann, U. K üsthardt and E. H erdtweck, J. Organomet. C hem., 1985, 294, C 37; R. D. Sanner, S. T. Carter and W. J. Bruton, jun., J. Organomet. Chem., 1982, 240, 157.

13 M. K. Cooper, J. M. Downes, P. A. Duckworth, M. C. K erby, R. J. Powell and M. D. Soucek, Inorg. Synth., 1989, 25, 129.

14 R. C. Murrey, L. Blum, A. H. Liu and R. R. Schrock, Organometallics, 1985, 4, 953.
15 G. M. Sheldrick, SHELXTL PLUS, Siemens A nalytical Instruments, M adison, WI, 1990.

Received 2nd M ay 1997; Paper 7/03350K

[^0]: † D edicated to the memory of Professor Sir Geoffrey Wilkinson.

